What is Frequency Modulation, FM

Frequency modulation, FM, is used in many applications from broadcasting to communications and offers several advantages over other modes.

Frequency Modulation Tutorial Includes:

Frequency modulation, FM     Modulation index & deviation ratio     FM sidebands, bandwidth     FM demodulation    

While changing the amplitude of a radio signal is the most obvious method to modulate it, it is by no means the only way. It is also possible to change the frequency of a signal to give frequency modulation or FM. Frequency modulation is widely used on frequencies above 30 MHz, and it is particularly well known for its use for VHF FM broadcasting.

Although it may not be quite as straightforward as amplitude modulation, nevertheless frequency modulation, FM, offers some distinct advantages. It is able to provide near interference free reception, and it was for this reason that it was adopted for the VHF sound broadcasts. These transmissions could offer high fidelity audio, and for this reason, frequency modulation is far more popular than the older transmissions on the long, medium and short wave bands.

In addition to its widespread use for high quality audio broadcasts, FM is also used for a variety of two way radio communication systems. Whether for fixed or mobile radio communication systems, or for use in portable applications, FM is widely used at VHF and above.

What is frequency modulation, FM?

To generate a frequency modulated signal, the frequency of the radio carrier is changed in line with the amplitude of the incoming audio signal.

frequency modulation signal showing how the modulating signal varies the carrier frequency
Frequency Modulation, FM

When the audio signal is modulated onto the radio frequency carrier, the new radio frequency signal moves up and down in frequency. The amount by which the signal moves up and down is important. It is known as the deviation and is normally quoted as the number of kilohertz deviation. As an example the signal may have a deviation of plus and minus 3 kHz, i.e. ±3 kHz. In this case the carrier is made to move up and down by 3 kHz.

Broadcast stations in the VHF portion of the frequency spectrum between 88.5 and 108 MHz use large values of deviation, typically ±75 kHz. This is known as wide-band FM (WBFM). These signals are capable of supporting high quality transmissions, but occupy a large amount of bandwidth. Usually 200 kHz is allowed for each wide-band FM transmission. For communications purposes less bandwidth is used. Narrow band FM (NBFM) often uses deviation figures of around ±3 kHz.

It is narrow band FM that is typically used for two-way radio communication applications. Having a narrower band it is not able to provide the high quality of the wideband transmissions, but this is not needed for applications such as mobile radio communication.

Frequency demodulation

As with any form of modulation, it is necessary to be able to successfully demodulate it and recover the original signal. The FM demodulator may be called a variety of names including FM demodulator, FM detector or an FM discriminator.

There are a number of different types of FM demodulator, but all of them enable the frequency variations of the incoming signal to be converted into amplitude variations on the output. These are typically fed into an audio amplifier, or possibly a digital interface if data is being passed over the system.

Read more about FM demodulation.

FM modulators

There is a variety of different methods that can be used to generate frequency modulated signals.

  • Varactor diode oscillator:   This method simply requires the use of a varactor diode placed within the tuned circuit of an oscillator circuit. It is even possible to use a varactor diode within a crystal oscillator circuit. Typically when crystal oscillators a re used the signal needs to be multiplied in frequency, and only narrow band FM is attainable.
  • Phase locked loop:   Phase locked loops provide an excellent method of generating frequency modulation. It is often necessary to manage the constraints within the loop carefully but once done it provides and excellent solution.

Advantages of frequency modulation, FM

FM is used for a number of reasons and there are several advantages of frequency modulation. In view of this it is widely used in a number of areas to which it is ideally suited. Some of the advantages of frequency modulation are noted below:

  • Resilience to noise:   One particular advantage of frequency modulation is its resilience to signal level variations. The modulation is carried only as variations in frequency. This means that any signal level variations will not affect the audio output, provided that the signal does not fall to a level where the receiver cannot cope. As a result this makes FM ideal for mobile radio communication applications including more general two-way radio communication or portable applications where signal levels are likely to vary considerably. The other advantage of FM is its resilience to noise and interference. It is for this reason that FM is used for high quality broadcast transmissions.
  • Easy to apply modulation at a low power stage of the transmitter:   Another advantage of frequency modulation is associated with the transmitters. It is possible to apply the modulation to a low power stage of the transmitter, and it is not necessary to use a linear form of amplification to increase the power level of the signal to its final value.
  • It is possible to use efficient RF amplifiers with frequency modulated signals:   It is possible to use non-linear RF amplifiers to amplify FM signals in a transmitter and these are more efficient than the linear ones required for signals with any amplitude variations (e.g. AM and SSB). This means that for a given power output, less battery power is required and this makes the use of FM more viable for portable two-way radio applications.


Frequency modulation is widely used in many areas of radio technology including broadcasting and areas of two way radio communication. In these applications its particular advantages can be used to good effect. For the future, other forms of digital modulation are becoming more widely used - DAB for radio broadcasting and a number of other formats such as TETRA for two-way radio communication systems. Despite these changes, FM will remain in use for many years to come as there are many advantages of frequency modulation for the areas in which it has gained a significant foothold in recent years.

More Essential Radio Topics:
Radio Signals     Amplitude modulation     Frequency modulation     Single Sideband     Radio receiver types     Superhet radio     RF mixing     Phase locked loops     Cellular telecoms    
    Return to Radio topics menu . . .