Balanced Feeder: antenna twin feeder

Balanced antenna feeder can provide some distinct benefits when it is used with balanced antenna in many situations

Balanced antenna feeder is also know under several other names including twin feeder, and ribbon feeder. The term open wire feeder or open wire transmission line is often used to describe a particular form of balanced feeder consisting of two separate wires with spacers.

Balanced feeder is a form of antenna feeder that can be used for feeding balanced antennas (i.e. antennas that do not have one connection taken to ground).

Balanced feeder is mainly used on frequencies below 30 MHz, but in theory it can be used at any frequency.

As the name indicates, balanced feeder offers the advantage of being balanced, i.e. not having one side grounded. In addition to this it can provide a form of antenna feeder that provides low levels of loss, provided that it does not pass close to other objects.

Balanced feeder is used less than coaxial feeder or coax, one of the main reasons for this is that it is affected by close objects and as a result it is not as convenient to use. It does not perform well if it is passed through a house in the same way that can be achieved with coaxial feeder.

Balanced feeder basics

A balanced or twin feeder consists of two parallel conductors unlike coax that consists of two concentric conductors.. The currents flowing in both wires run in opposite directions but are equal in magnitude. As a result the fields from them cancel out and no power is radiated or picked up. To ensure efficient operation the spacing of the conductors is normally kept to within about 0.01 wavelengths.

The feeder exists in a variety of forms. Essentially it is just two wires that are closely spaced in terms of the radio frequency of operation. In practical terms manufactured feeder is available and it consist of two wires contained within a plastic sheath that is also used as a spacer between them to keep the spacing, and hence the impedance constant. Another form commonly called open wire feeder simply consists of two wires kept apart by spacers that are present at regular intervals along the feeder. It has an appearance a little akin to a rope ladder.

Balanced feeder Twin feeder a form of balanced feeder

Balanced feeder impedance

Like coaxial cable, the impedance of twin feeder is governed by the dimensions of the conductors, their spacing and the dielectric constant of the material between them. The impedance can be calculated from the formula given below.

Z 0 = 276 log 10 ( D d ) ɛ

D is the distance between the two conductors
d is the outer diameter of the conductors
ε is the dielectric constant of the material between the two conductors

Types of balanced feeder

This type of feeder can take a variety of forms. An "open wire" feeder can be made by having two wires running parallel to one another. Spacers are used every fifteen to thirty centimetres to maintain the wire spacing. Usually these are made from plastic or other insulating material. Typically this feeder may have an impedance of around 600 ohms, although it is very dependent upon the wire, and the spacing used.

The feeder may also be bought as flat 300 ohm ribbon feeder consisting of two wires spaced with a clear plastic. This is the most common form and is the type that is used for manufacturing temporary VHF FM antennas. If used outside this type absorbs water into the plastic dielectric. Not only does this significantly increase the loss on damp days, but the moisture absorbed causes the wire to oxidise which in turn leads to increased losses over the longer term.

The feeder can also be bought with a black plastic dielectric with oval holes spaced at intervals in spacing. This type gives far better performance than the clear plastic varieties which absorb water if used outside.

More Antenna & Propagation Topics:
EM waves     Radio propagation     Ionospheric propagation     Ground wave     Meteor scatter     Tropospheric propagation     Cubical quad     Dipole     Discone     Ferrite rod     Log periodic antenna     Parabolic reflector antenna     Vertical antennas     Yagi     Antenna grounding     Coax cable     Waveguide    
    Return to Antennas & Propagation menu . . .