WHDI RF Physical Layer

- the Wireless Home Digital Interface, WHDI physical layer enables the information to be transmitted from one unit to another. It is the area that interfaces with the radio signal.


Wireless Meter Bus Includes:
WHDI basics     Physical layer    


The WHDI physical layer is a key area of the whole WHDI system.

The physical layer is that area of the overall WHDI system that enables communication with the external world. For WHDI that transmits data wirelessly, it contains the RF signal generation and it deals with the packet formats on this signal, and may other aspects pertaining to the external interface.

WHDI physical layer basics

The WHDI standard was aimed at allowing multimedia devices to connect easily over a wireless interface. Normally wired interfaces have been sued in the past and these often require thick and bulky cables for their interconnection. Behind most home television sets, this is a nest of wires that are not always easy to hide.

However multimedia, and in particular, video requires high data streaming rates. To enable the required data rates to be achieved the WHDI physical layer employs a number of techniques used by other high data rate systems.

  • OFDM:   The WHDI physical layer employs OFDM, orthogonal frequency division multiplex, as the overall signal format. This has been shown to provide robust communications for data systems where high data rates are employed.

    Note on OFDM:

    Orthogonal Frequency Division Multiplex, OFDM is a form of signal format that uses a large number of close spaced carriers that are each modulated with low rate data stream. The close spaced signals would normally be expected to interfere with each other, but by making the signals orthogonal to each other there is no mutual interference. The data to be transmitted is shared across all the carriers and this provides resilience against selective fading from multi-path effects.

    Read more about OFDM, Orthogonal Frequency Division Multiplexing.

  • MIMO :   MIMO or Multiple Input Multiple Output is also used by the WHDI physical layer. It allows much higher data rates to be achieved than would be possible without it.

    Note on MIMO:

    MIMO is a form of antenna technology that uses multiple antennas to enable signals travelling via different paths as a result of reflections, etc., to be separated and their capability used to improve the data throughput and / or the signal to noise ratio, thereby improving system performance.

    Read more about MIMO technology

Devices operate in the 5 GHz ISM, Industrial, Scientific and Medical frequency band. As such they operate alongside other standards including IEEE 802.11a, 802.11n and 802.11ac as well as other license free devices.

Ranges can be up to about 30 metres and the system can deliver full HD video. It is also scalable for higher resolution video and also for 3D.

WHDI physical layer data compression

AV content delivered between wired units like DVD recorders and the like to a display such as a television is uncompressed. Not only is the quality compromised somewhat, but there are also issues with copyright infringement, and interoperability between the plethora of codec formats that would be used..

As a result the data transferred across the WHDI physical layer is undertaken in an uncompressed format which means that high data transfer rates are required.

WHDI TDD

The WHDI physical layer uses the same channel for uplink and downlink as this provides a far better use of the available frequency spectrum. Typically around 98% of the data is transferred in the downlink direction, i.e. from the data source to the display. This is because the payload data is transferred in this direction only and the uplink only carries control information, e.g. acknowledgements and other management messages.

To ensure that the WHDI TDD techniques operate with the maximum efficiency, the uplink transmissions occur during the vertical blanking period when there is no data in the downlink direction.

WHDI physical layer frames

In order to ensure the data is transmitted in a standardised format that can be decoded at the remote end, the WHDI physical layer transmission is split into frames.

  • Downlink:   During the downlink transmission period, Downlink PHY Data Units, DLPDUs are transmitted. These DLPDUs contain A/V and control information.
  • Uplink:   During the uplink transmission Uplink Initialization PHY Data Units, UPIPDUs are transmitted and Uplink Control PHY Data Units, ULCPDUs.

Modem frames comprise an uplink WHDI frame and a downlink WHDI frame and they are aligned with the video frames. In this way, both video and modem frames have the same rate. There may also be a short silence and RF turnaround time at the end of the uplink frame and before the next downlink frame starts.

Within the data transmission, the active video period is defined as the time between the transmission of the start of the first pixel in a video frame to the end of the last. In this way, the data transmission occurs during the active video period.

Using the active video period in this way gives a small amount of time for buffering and it also helps reduce latency.



Wireless & Wired Connectivity Topics:
Mobile Communications basics     2G GSM     2G GPRS     2G GSM EDGE     3G UMTS     3G HSPA     4G LTE     5G     LMR / PMR     WiFi     IEEE 802.15.4     DECT cordless phones     NFC- Near Field Communication     Ethernet     Serial data     USB     Z-Wave     SigFox     LoRa    
    Return to Wireless & Wired Connectivity